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Abstract. Multimaterial Eulerian and Arbitrary Lagragian-Eulerian (ALE) codes usually use volume 
fractions of materials to track individual components in mixed cells. Material advection usually is 
calculated either by interface capturing, where a high-order van Leer–like slope reconstruction 
technique is applied, or interface tracking, where a normal reconstruction technique is applied. The 
former approach is more appropriate for gas-like substances, and the latter is ideal for solids and 
liquids, since it does not smear out material interfaces. A wide range of problems involves both diffuse 
and sharp interfaces between substances and demands a combination of these techniques. It is possible 
to treat all substances that can diffuse into each other as a single material and only keep mass fractions 
of the individual components of the mixture. The material response can be determined based on the 
assumption of pressure and temperature equilibrium between components of the mixture. 
Unfortunately, it is extremely difficult to solve the corresponding system of equations. In order to 
avoid these problems one can introduce an effective gamma and employ the ideal gas approximation to 
calculate mixture response. This method provides reliable results, is able to compute strong shock 
waves, and deals with complex equations of state. Results from a number of simulations using this 
scheme are presented.
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INTRODUCTION: A COMBINED 
SOLID/LIQUID/GAS PROBLEM

Intense loading of complex structures 
consisting of solids and fluids (as depicted on 
Fig.1) presents a formidible challenge for 
numerical simulation. The traditional approaches, 
where the solid is simulated by a Lagrangian 
technique coupled with an Eulerian fluid solver, 
fails here since the solid undergoes severe 
deformation. Such problems require either an Figure 1. A combined solid/liquid/gas problem with 

large deformations and diffusive mixing



Eulerian or Arbitrary Lagrange-Eulerian approach. 
Material interfaces in these cases are usually 
represented with mixed. In mixed cells, volume 
fractions of each fluid have to be advected with the 
material velocity from cell to cell. This process has 
to be modeled differently for solids, where material 
interfaces are very sharp, and for fluids, where 
convective mixing can be a key factor in the flow. 
Sharp material interfaces are treated with an 
interface tracking method, where the interface 
position is reconstructed using volume fraction 
information from neighboring cells. Diffusive 
interfaces are implicitly captured, meaning that 
mass fractions are advected using the single fluid 
algorithm as a history-dependent parameter.

SHARP MATERIAL INTERFACE 
TREATMENT 

It is of interest to compute large-deformation 
flows in problems consisting of multiple resolved 
solids. The algorithm described here treats the 
propagation of surfaces in space in terms of an 
equivalent evolution of volume fractions defined 
by the equation: 
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where fα and Kα are the volume fraction and bulk 
modulus of each material α and v is the velocity 
in the cell. The approach to modeling multimaterial 
cells is similar to that in [3]. Specifically, material 
properties have multiple values in a cell, but the 
velocity and stress are single valued. In order to 
use the single-fluid solver it is necessary to define 
an effective single phase for the mixed cells and to 
update material volume fractions based on self-
consistent cell thermodynamics [3]:
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where , ijGα ασ are the shear modulus and stress 
tensor components of material α . Distribution of

the velocity gradient amongst each material in the 
cell is done in a similar way:

/G Gα α=L L
In order to advect volume fractions we use high 

order interface reconstruction (interface tracking), 
which preserves linear interface during translation.

DIFFUSE MATERIAL INTERFACES

In contrast with solid material interfaces, which 
have to stay sharp in the course of a simulation, 
gases tend to mix with each other by various 
mechanisms (molecular diffusion, convective and 
turbulent motion). The other significant difference 
is that only the traction vector is continuous on 
solid material interfaces, while the temperatures are 
different since each material is deformed 
adiabatically and thermal flux across the interface 
is negligible. Temperature in gases, on the other 
hand, equilibrates much more quickly since the 
thermal conductivity is higher and, more 
importantly, other mechanisms related to material 
mixing are present. Hence pressure and 
temperature equilibrium between different 
substances in the gas mixture should be enforced.

Under pressure and temperature equilibrium 
mass fractions ( /m f=α α αρ ρ , where αρ is 
material density) provide enough information to 
reconstruct the rest of the mixture state variables. 
The mass fractions can be treated as internal state 
variables and updated with a simple advection 
equation
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In order to simulate turbulent mixing of 
components, subgrid scale models are usually 
employed. Alternatively, a monotonically 
integrated large eddy simulation (MILES) can be 
used for turbulence modeling. This idea was 
introduced in [1] and has been provided with 
physical rationale by [2]. The idea is that the 
monotonic integration scheme of discrete finite-
volume equations (such as the high-order Godunov 
scheme we use) produces dissipation due to 
truncation error comparable to the actual 
dissipation due to turbulent mixing. So, since we 
use a MILES-type scheme, turbulent mixing is 
introduced implicitly by the numerical 



approximation and an explicit turbulence model is 
not required.

In order to calculate pressure and temperature at 
each time step, we need to solve a computationally 
expensive nonlinear system of equations to 
calculate densities and energies of the species:
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where , ,p Tα α αε are pressures, temperatures and 
specific internal energies of each component. In the 
two-phase region this system can be singular and 
non-convergent. 

In order to simplify the problem and improve 
numerical efficiency and robustness, we first 
consider an ideal gas approximation to calculate 
properties of the diffusive mixture.

We derive the formulas for an ideal gas, then 
extend the approach to other gases. The internal 
energy of multicomponent ideal gas mixture under 
temperature and pressure equilibrium is:
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where R is the universal gas constant, wα is the 
molecular weight and αγ is the ratio of specific 
heats  for the gas. Pressure can be calculated by an 
appropriate weighted sum of partial pressures:

(1/ )p w w f pα α α= ∑ ,
where we define an effective molecular weight and 
effective gamma as follows:
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In order to extend this approach to non-ideal 

equations of state we need to define an effective 
gamma, αγ , for each material. There are many 
ways to do this; we chose one based on pressure, 
since it drives hydrodynamic material motion:
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This is a relatively slowly varying parameter for a 
wide range of densities and temperatures for many 
real materials

Since the mixture is not ideal, we need to make 
an assumption about the density and energy 
partition amongst components and calculate the 
pressure, p̂ , using a tabulated equation of state. 
We make the following assumption:
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α α

ε = ε
ρ = ρ

Then employing the ideal gas relation we calculate:
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Finally, the average pressure is:
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(6) can be far from the actual specific internal 
energy of a given component. Nevertheless, it can 
yield reasonable results for calculating the overall 
pressure since it is just used to evaluate an effective  
gamma for the mixture. We can calculate the 
zeroth order approximation of cell temperature:

( )ˆ1/ / ,T m T mα α α= ρ ε∑
While this formula will calculate temperatures 

for individual components ( )ˆ ,T T mα α α= ρ ε
incorrectly even for an ideal gas, the average cell 
temperature will be consistent with the answer for 
ideal gas:
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In order to improve the estimate of the 
temperature of each component, however, we 
would need to have a better energy estimate. Once 
we have calculated the pressure and αγ for a given 
component, we can improve our energy guess for 
the temperature calculation as follows:

( ) ( )( )1 / 1w wα α αε = γ − ε γ −
In this way, it is possible to construct an 

iterative procedure to determine component states 
corresponding to pressure and temperature 
equilibrium. However, this is (computationally) 
quite expensive so we have chosen to use a zeroth 
order estimate.



RESULTS AND DISCUSSION

A problem to test our method of diffusive 
interface treatment has been simulated. This is a 
1D shock tube with initial material states as shown 
in Fig. 2. These conditions were chosen to be 
representative of material states in the problems in 
[4]. Fig. 3 depicts profiles of pressure and 
temperature after 200 steps. The dashed line 
represents results where the specific internal 
energy is assumed to be the same for each mixture 
component, the solid line represents a simulation 
where the specific internal energy was redistributed 
based on calculated effective gammas. Overall, the 
profiles of pressure and temperature for these 
approximations are very similar and, given the 
uncertainties in the other parts of the numerical 
model, we feel it is appropriate to use the simple 
zeroth order approximation to calculate the 
pressures and temperatures of the multicomponent 
mixture in complex multidimensional simulations. 
Further applications of proposed technique can be 
found in the complement paper [4].

Air           Water                      Air
T=1eV    T=680K                   T=300K
p=4GPa  p=24MPa                p=0.1MPa

Figure 2. Initial conditions for 1D Test of Approximate 
Pressure and Temperature Calculations

CONCLUSIONS

This paper proposed a simple way to combine 
sharp and diffusive interfaces in one simulation. 
Turbulent mixing of multicomponent mixtures is 
simulated by implicit modeling with a monotonic 
integration scheme. A non-iterative robust method 
to calculate mixture properties (pressure and 
temperature) has been developed 

Further work may include an algorithm to 
dynamically convert material from solid or liquid 
phase to gas for diffusive mixing based on a 
multiphase equation of state. 
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Figure 3. Similation of 1D Test with Approximate 
Pressure and Temperature Calculations
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